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The study of the dynamics of large-scale eddies and thermals in the atmosphere is impor- 
tant for various applications in meteorology, ecology, and the theory of combustion and ex- 
plosion. Although the laws governing the rise of individual objects have been studied with 
sufficient thoroughness (see [1-5], for example), there has been much less attention given 
to the laws governing the rise and interaction of paired objects [6-10]. In the present 
study, we numerically investigate the interaction of two large-scale thermals separated along 
the vertical (two-dimensional problem) and the horizontal (three-dimensional problem). We 
will also examine the formation of air flows in the atmosphere by these thermals. 

i. Formulation of the Problem. We will examine the interaction of a pair of thermals. 
Without going into the details of the mechanism by which they develop, we assume that two 
equal spherical volumes of gas are formed in the atmosphere at a certain moment of time t = 0. 
The volumes have the radius R'0 and are filled with heated gas. Let the temperature of the 
gas in each volume obey the law 
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where R' i is the distance from the center of the corresponding thermal; T' S is the temperature 
of the gas at their centers; To = T a (z = 0) (here and below, the subscript denotes the param- 
eters of a standard atmosphere [ii]). The gas is assumed to be stationary at the initial 
moment of time: v = 0. Its pressure everywhere is equal to the undisturbed atmospheric 
pressure p' = pa(Z). Let H' I = R' 0 be the height of the center of one of the thermals above 
the surface; and L' is the distance between the vapor centers. Thus, the height of the cen- 
ter of the second thermal H' 2 = H' I = R' 0, in the case of separation along the horizontal, 
while -H' 2 = H'I + L' 

In dimensionless variables, the initial system of equations has the form 

dv l Vp + G + Av -~- V (div v) 
dt ?MZO ~ ~ ' 

dp 
dt y p  div v + AT, 

dT 37 A T ,  p = p T ,  d O 
d--t- = - -  (? - -  1) T div v -f- Re er-----T dt ~---- Ot -~- (vV), 

(1.1) 

where v is velocity; p is density; p is pressure; T is temperature; and G is a unit vector 
in the direction of the force of gravity. 

In introducing dimensionless variables, we used the following as scales: the height of 
the uniform atmosphere A; time ~5/g; velocity /~g; density 00 = pa(O); temperature T o = Ta(0); 
and pressure P0 = Pa (0) at the surface of the earth. 

Given this choice of scales, the flow (see the initial conditions and system of equations 
(i.i)) is described by the determining parameters: 

r t 

Ro = fro~A, M,  = H /A, L = = T /ro, 

M = ( A g / ~ R ~  2, Re-----A]/r~ '9o/~,  Pr--- -~%/~, ,  ?. 
(1.2) 
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Fig. 1 

Having completed the mathematical formulation of the problem, we present the boundary 
conditions. In the axisymmetric case (with the thermals located on one vertical and with the 
theoretical region being a rectangle having moving top and bottom faces; G---- {0 ~ r~ ]+(t), 
0 ~ z ~ ~+(t)}) the boundary conditions are as follows: 

r - - - - /+( t ) :  u ---- aw/ar = O, p = pa(z) ,  T ---- Ya(Z); 

r ~ O: u = O w / O r  =Op/Or = a T ~ a t  = 0 ;  

z - - - - - -~ ( t ) :  Ou/Oz = w- - - -O ,  p = p a ( q ; + ) ,  T ---- Ya(~+);  

z = 0 :  u = w = O ,  OT/Oz=O.  

(t.3) 

In the three-dimensional case (with the thermals located on a single horizontal and the 
theoretical region being a rectangular parallelepiped with moving top and bottom faces (here, 
we assume that the vertical plane y = 0 passing through the centers of both thermals is a 
plane of symmetry): V = {A(t) ~ x ~ f+(t), 0 ~ g~ ~+(t), 0 ~ z ~ ~+(t)}) the boundary conditions 
have the form 

x = / + ( t ) :  u = a v / a x  = a w l a x  = o ,  p = pa(Z), T ---- Ta(z); 

y = O: v = au/Og = aw/Og = Op/Og = OTlay = O; 

g = q~_(t): Ou/ay = v =Ow/Og-=O,  p = p a ( z ) ,  ir = Ta(z); 

z - - - - ~ + ( t ) :  Ou/Oz = av/Oz = w  = 0 ,  p ----pa(~+),  T = Ta(~+) ;  

z = O : u = v = ~ v - = O ,  a Y / O z = O .  

(1.4) 

2. Method of Calculation. The above problems will be solved numerically using an ex- 
plicit three-step scheme involving splitting of the physical processes in the phenomenon. 
Discretization is performed as follows. In the first step, the initial system of differential 
equations (i.i), minus the dissipative terms, is approximated on an intermediate time layer 
by difference equations with the use of the Lax scheme. In the second step, the sought 
functions are found on the top time layer for the same equations by means of a "cross" scheme. 
The dissipative terms are calculated in the third (final) stage. 

The calculations for the three-dimensional problems were performed on relatively fine 
meshes: from 33 x 16 x 75 (39600 nodes) to 103 x 16 x 75 (123600 nodes). The calculations 
were performed on a vector-conveyor complex consisting of an ES-1055M computer linked with 
a MAMO processor (see [121). Use of a vector-conveyor computer (with vectorization of the 
algorithm and program) made it possible to speed up the calculation by a factor of ten. The 
accuracy of the results was checked by checking for satisfaction of the conservation laws. 

The method was tested by performing calculations for a well-known axisymmetric problem 
concerning the rise of a large-scale thermal in the atmosphere. Here, we compared results 
calculated by two- and three-dimensional methods. We examined a thermal with the parameters: 
R'0 = H'z = 0.17 &, T' s = 12.3 To, M = 0.2, Re = 103 , Pr = i, 7 = 1.4. The test calculations 
showed that the maximum deviations of the sought functions are small (Fig. i, where the dis- 
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Fig. 3 

tributions of temperature T(z), pressure p(z), and the vertical component of velocity w(z) 
(lines 1-3) on the symmetry axis of the thermal are shown for the moment of time t = 4.1 
(743rd time layer); the solid curves show the three-dimensional results, while the circles 
represent the two-dimensional results). The values of T(z) and p(z) nearly agree, and the 
deviations of w(z) are no greater than 7%. 

3. Rise and Interactions of a Pair of Coaxial Thermals. Let us examine the laws govern- 
ing the rise and interaction of two thermals located on the same vertical axis. In this case. 
the determining parameters of the test problem on the rise of a single thermal are supple- 
mented by the parameter H 2 = H i + L. The parameter L was varied within the range from 2R0 to 
3R0. 

Interaction between the top and bottom thermals within the given range of L is weak 
roughly to t = 0.34, and they rise as would their corresponding individual analogs. The nas- 
cent vortex structures then begin to interact; the evolution of the lower thermal at this 
stage alters the motion asymptote, the thermal ceasing to rise in accordance with the law 
Z ~ t I/2 (as a single object) and beginning to move upward in accordance with Z ~ t 2. Here, 
it rapidly overtakes the upper thermal (this change in the asymptote was first noted in [13]). 
This development is evident in Fig. 2, where curves 1 and 2 represent the height of ascent of 
the pair of thermals as a function of time and correspond to L = 2R 0 and 3R0. For L = 2R0, 
the lower thermal overtakes the upper thermal at t ~ 0.72. Meanwhile, since the vortex rings 
have not yet fully formed by this moment, the thermals appear to merge into a single struc- 
ture in the interaction. 

The interaction proceeds differently for L = 3R 0. By the moment t = 0.72, both thermals 
have been transformed into vortex rings with several distorted elliptical sections. The mu- 
tual effect of the thermals on one another increases greatly after this transformation, lead- 
ing to significant deceleration of the upper thermal and acceleration of the bottom ring on 
the time interval from 0.72 to 1.45 (curve 2 in Fig. 2). The radius of the upper vortex ring 
gradually increases as a result of the interaction and its cross section assumes a circular 
form. Here, the radius of the lower ring decreases. Being greatly extended along the symme- 
try axis, this thermal represents a vortex structure with two cores in which vorticity has 
the same direction. Over time, the lower structure becomes more and more drawn out inside 
the top ring, this being accompanied by an increase in vorticity in its upper core and a de- 
crease in same in the lower core; the lower core finally degenerates by t ~ i. At t = 1.43, 
the lower ring rapidly moves through the interior opening in the upper ring and they change 
places. This marks the realization of the first phase of the vortex "game" (curve 2 in Fig. 
2). Now, the interaction of the still-forming velocity fields results in an increase in the 
radius of the new upper ring and its deceleration. Conversely, the radius of the new lower 
ring decreases and it is accelerated. However, in contrast to the case of an ideal fluid 
[14I), the game ultimately ends due to the effects of diffusion of vorticity and the viscosity 
associated with secondary motion of the pair of rings in the compressible medium. The rings 
eventually merge into a single vortex (curve 2 in Fig. 2 for t ~ 2). This result was con- 
firmed by experimental data obtained in [15] in a study of natural convection. 
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Fig. 4 

Let us see how the initial distance L between the thermals in the pair affects the maxi- 
mum vertical component of velocity (for the rate of rise). Figure 3 shows the dependence of 
Wma X on time t (line is for the lower thermal in the pair, line 2 is for the upper thermal 
with L = 2.5R0, and lines 3 and 4 are for the lower and upper thermals with L = 3R 0, respec- 
tively). It can be seen how the velocities of the lower vortex rings rapidly increase [in 
the form of the jump in Wmax(t)] at the moment of passage through the upper rings, this phe- 
nomenon being more pronounced at smaller values of L (curves 1 and 3). 

Figure 3 also shows the dependences of the maximum temperatures Tma x in the lower and 
upper (lines 5 and 6) thermals on time t at L = 2.5R 0. The value of Tma x initially decreases 
somewhat more rapidly in the upper thermal, since it is rising in a cold undistrubed medium 
and the lower thermal is ascending in its wake. After movement of the lower thermal through 
the upper thermal, they change places and temperature begins to drop more rapidly in the new 
upper thermal (curves 5 and 6). 

An analysis of the calculated results permits the following conclusions. The ascent of 
a system of two large-scale coaxial thermals in the atmosphere is initiated by intensive vor- 
tical flows. A circulating flow with two ceres is formed during the initial stage of ascent 
of the pair of thermals. Later, as a result of merging of the vortex structures, this flow 
is transformed into a circulating flow with a single vortex core. The course of the interac- 
tion of the thermals depends on the initial distance between them. At L < 2.5R0, the result- 
ing pair of vortex structures does not have the form of rings (the interior openings are 
absent), and the two merge in a manner similar to liquid drops when the lower thermal over- 
takes the upper thermal. A pair of annular vortices is formed at L ~ 2.5R0 and a vortex 
"game" takes place within a certain time interval. Then in both cases the resulting mono- 
vortex rises in complete accordance with the law governing the ascent of individual struc- 
tures: first in the self-similar regime (Z ~ ti/2), then slowing and fluctuating about an 
equilibrium position with a decaying amplitude as it generates internal waves in the atmos- 
phere [I, 4, 5]. Here, during the concluding stage, multiple inversions of the temperature 

field take place. In this instance, regions with temperatures that are higher and 
lower than the surrounding air alternate on the symmetry axis. The oscillations of the 
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cloud in the atmosphere generate a system of long, oppositely directed vortices and ascending 
and descending air flows. These processes continue until diffusion is completed [4, 5]. 

4. Rise and Interaction of Two Thermals Separated along the Horizontal. Now let us see 
how a pair of identical thermals located on a single horizontal axis rise and interact. In 
this case, the determining parameters of the problem are supplemented by the parameter L = 
L'/A (L' is the distance between the centers of the thermals; L varies within the range from 

2R 0 to 3R0). 

As for the pair of thermals located along the vertical, L plays an important role with 
horizontal separation. When L = 2R 0, a pair of severely deformed contacting vortex rings is 
formed by the moment of time t = 0.34 (the term "vortex ring" is used quite loosely here, in 
view of the very small size of the interior hole). Here, the contacting sections of the rings 
are considerably smaller than the more distant sections and are quite a bit higher than the 
latter. Each vortex ring that is formed is accompanied by axial (perpendicular to the mid- 
section) flow through the narrow interior hole in the form of a high-intensity jet. These 
divergent jets begin to interact and approach one another (as occurs for pairs of divergent 
and parallel plane jets from nozzles [16, 17] and sprays [18J). After a certain period of 
time (at t ~ 1.36), the jets merge to form a single long high-intensity jet. However, the 
circulatory motion remains in this case (Fig. 4a, which shows the vector field of velocity in 
the left half of the plane of symmetry xOz (the vertical plane passing through the centers 
of both thermals) at t = 3.i). 

Figure 5a shows the distributions of the vertical component of velocity w over x for 
two sections along z in the plane of symmetry at t = 4.1. The solid line shows the contour 
bounding the region where w = 0.3 Wma x. The dashed lines represent vorticity isolines. 
Figure 5b shows the corresponding distributions of the axial component of the velocity of 
the combined jet formed by the merging of two divergent jets leaving nozzles. The solid con- 
tour delimits the region with w ~ 0.3 Wma x. Shown below is the direction of the initial flow 
in one of the nozzles (this figure corresponds to Fig. 1 in [16]). Comparison of the images 
in Fig. 5a and Fig. 5b illustrates that the structures of the combined jets are completely 
analogous - despite the difference between the processes leading to their formation and the 
enormous difference in scales. Such a flow structure is maintained until attainment of the 
maximum altitude, where the cloud undergoes supercooling and a secondary vortex rotating in 
the opposite direction is formed above it (Fig. 4b, which shows the velocity field in the 
right side of the plane of synnnetry at t = 6.1 in a scale different from that used in Fig. 
4a). It is interesting to note that "residues" of the jet flow remain above the secondary 
vortex. 

Now let us examine the interaction of a pair of symmetrical thermals separated along 
the horizontal by the distance L = 3R0 at the initial moment of time. The vortex fields 
formed near each thermal do not interact with one another until the moment t = 0.35. During 
this time, they ascend and cool as would the corresponding individual analogs. In contrast 
to the variant with L = 2R 0, vortex rings with curved elliptical sections are partially 
formed before the beginning of the interaction. The closest and most distant sections of the 
rings in the pair are identical, i.e., they have the same dimensions and no distortion. 
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Continual reinforcement of the circulating motion leads to an increase in the intenslties 
of the jets - the central axial flows of the rings. The parallel jets are drawn to one 
another as a result of mutual ejection, so that the axes of the jets are inclined toward one 
another in the "upper" flow (in the regions where the jets leave the interior openings of the 
vortex rings) and merge to form a single jet in the "lower" flow. Inclination of the central 
jets toward one another in turn leads to inclination of the vortex rings toward each other. 
As a result, the closest parts of the rings are positioned somewhat below the parts that are 
farther from one another, i.e., the distortion noted in [i0] takes place. This process of 
disturbance of the axial symmetry of each thermal occurs gradually, beginning roughly with 
the moment t ~ 0.7. Also, as a result of natural expansion (as is known, the radius of a 
ring at the self-similar stage increases in accordance with the law R ~ tll2), the lower 
parts of the vortex rings approach one another until they come into contact. 

The two vortex structures subsequently merge into a single vortex with simultaneously 
intensifying (as a result of collision) jets that were already inclined toward one another 
(this process is analogous to the collision of convergent jets leaving two nozzles [19]). 
By the moment t ~ 3.1, the adjacent internal sections of the rings have disintegrated and a 
single vortex has formed. The formation of the single vortex owes both to reclosure of the 
vortex lines (see [20] for more detail) and to the entrainment of gas under the adjacent parts 
of the rings into the overall jet flow. The gas is dram into the main flow by the develop- 
ment of low-pressure zones overhead (in the region between the interacting jets) [16-19]. 
Not all of the fragments of the resulting large, elongated vortex about the same plane (it is 
essentially a three-dimensional object): the fragments of the vortex located at the sites 
where the ring sections merge remain lower than the other fragments (see Fig. 5 in [8]) and 
two jets still flow from each of its halves. 
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By the moment of time t ~ 5, intensified entrainment of the gas under the vortex by the 
jen results in complete disintegration of the circulating flow and the formation of a broad 
divergent jet. Figure 6 shows distributions of the vector fields of velocity in the plane 
of symmetry xOz for two moments of time. Here, a corresponds to the moment t = 0.7, when two 
intensive vortices have already formed and have begun to interact (the left half of the field 
is shown). Region b in the figure corresponds to the moment t = 5.1, when the flow has al- 
ready been completely transformed into a divergent jet (the figure shows the right half of 
the vector field in a scale different than that used in Fig. 6a). 

Let us see how the rise of a pair of large-scale thermals in the atmosphere is influ- 
enced by their initial location in space. In [21] a simplified model was used to study the 
ascent of clouds from multiple nuclear explosions occurring close to one another almost simul- 
taneously in an exponential atmosphere. The results obtained with this model indicate that 
the greatest altitude reached by several clouds is roughly the same as the altitude reached 
by a single cloud with an equivalent total energy. Our caiculations show that the situation 
is actually considerably more complex. For example, curve 5 in Fig. 2 corresponds to 
the height reached by a single thermal with doubled energy as a function of time: 
Z = Z(t). It is evident that only line 3, corresponding to the ascent of two contact- 
ing (L = 2R 0) thermals separated along the horizontal, is fairly close to line 5. Curve 4, 
corresponding to an initial separation along the horizontal L = 3R0, is considerably lower 
than these lines. Meanwhile, t~e difference in altitudes increases with time. This is prob- 
ably attributable to the qualitative difference in the resulting air flows. At L < 2.5R0, 
the pair of thermals rises more rapidly and is able to reach an equilibrium position before 
disintegration of the circulating flow, i.e., in this sense the pair behaves as a single 
thermal (see Fig. 4). At L > 2.5R 0 (we should note that the results calculated for L = 5R0, 
not shown here, were qualitatively similar to the results for L = 3R0), the circulating mo- 
tion ceases at a certain stage of evolution of the flow and an ascending expanded jet is 
formed (Fig. 6). 

Curves 1 and 2 in Fig. 2, corresponding to pairs of coaxial thermals with L = 2R0 and 
L = 3R0, are considerably higher than curve 5. This occurs because, with vertical separation, 
the ascent of the flows which takes place due to the vortex "game" occurs at a substantially 
greater velocity. 

In conclusion, we note that a check of the satisfaction of the conservation laws (for 
the three-dimensional problems) showed deviations of 2.2% for mass and 5.7% for energy. 
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FIELD OF LONG INTERNAL LEE WAVES IN A PLANE-PARALLEL 

SHEAR LAYER 

V. E. Veden'kov UDC 532.59 

A linear formulation is used to examine a three-dimensional problem on long steady-state 
internal waves formed by the movement of a plane-parallel shear flow over a short (relative 
to the depth of the water) isolated seamount. In contrast to [i, 2] (where a general linear 
formulation was used in a study of a field of internal lee waves in a uniform flow of an ex- 
ponentially stratified fluid) and [3, 4] (where an asymptotic analysis was made of forced 
waves in a stably stratified flow with a velocity shift), in the present study we use a quasi- 
static approximation to obtain a series of double integrals representing an exact solution to 
the given problem for shear flow and arbitrary stable stratification of the fluid. The solu- 
tion is obtained in elementary functions for a mountain of model form. Examples are presented 
of calculation of the near region of a field of internal lee waves in uniform and shear flows 
for an empirical Weisshall-Brent frequency profile. 

i. Let a flow of an ideal, incompressible, stably stratified fluid of constant depth 
H travel from infinity with the velocity U(z) to an isolated underwater obstacle z = -H + 
hf(x, y). Meanwhile, maxlf I = i, h << H, f ~ 0 for x 2 + y2 ~ ~; x and y are the horizontal 
coordinates; z is the vertical coordinate. The x axis is directed along the incoming flow, 
while the z axis is directed vertically upward. The origin of the coordinate system coincides 
with the undisturbed free surface. 

In a quasistatic approximation, the steady-state wave field created by the obstacle in the 
the flow is described by the equations 

Uu~ + wU~ polp~, Uv~ = -~ ---- - -  - -  Po P~, 
Pz ---- - - P g ,  U p x  + wpo z = O, Ux + v v + w t = 0  

(I.1) 

with the boundary conditions 

P = Pog~, U ~ x  = ~v (z = 0) ,  w = h U / x  (z  = - - H ) ,  ( 1 . 2 )  

where u, v, and w are components of the vector of the wave velocities; p and p are perturba- 
tions of pressure and density; ~ is the displacement of the free surface; and p0(z) is the 
undisturbed density profile. The subscripts denote differentiation with respect to the corre- 
sponding coordinate. Along with (1.2), we need to satisfy the radiation condition. The lat- 
ter consists of the fact that all of the principal wave disturbances are concentrated down- 
stream (x > 0). 
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